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ABSTRACT

Aim Selecting informative variables is crucial for species distribution modelling

and ecological studies in general. Proxies quantifying water accumulation may

have suitable properties because hydromorphy partly determines plant and

animal communities. Topographic wetness index (TWI) was developed to

locate wetlands but has largely been ignored from ecological studies despite the

value of these areas for biodiversity and the ecosystem services they provide.

We assessed here the ability of TWI to predict the occurrence of grassland

passerines and tested different settings to determine which was the best

predictor for our dataset.

Location Floodplain meadows in the Loire valley, France, Western Europe.

Methods We recorded the occurrence of four grassland passerines on 64 tran-

sects in large hay meadow patches. We computed four TWIs based on digital

elevation models (DEMs). TWIs compute water accumulation as a function of

slope and catchment. We tested two DEM resolutions (50 m and 250 m) and

four TWI algorithms to identify which combination yielded the best model fits

to our dataset.

Results Results depended on the predictor settings and the species considered.

TWI predicted the occurrence of the Whinchat, the most specialized species,

and the combined occurrence of the others three passerines. One TWI

algorithm (SWI) yielded the poorest fit, and we could not determine the best

algorithm among the others three. The coarser DEM resolution (250 m pixel

size) also yielded better fitting model than the finer resolution (50 m).

Main conclusions Topographic wetness index appears as an informative

predictor of species occurrence, at least for the Whinchat, and a useful proxy

to detect suitable areas for floodplain grassland birds. This family of indices

may improve our ability to model the habitat of wetlands species. However,

DEM resolution and algorithm should be selected with caution as they may

impact the predictive potential of the proxy.
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INTRODUCTION

Selecting the most informative predictors is a challenging

issue for species distribution and habitat modelling and for

ecological studies in general. Ideally, one chooses factors that

directly influence population growth or distribution or, if

these are not identified or available, proxies that reflect biotic

or abiotic processes relevant to the target species (Phillips

et al., 2006). In addition to the usual bioclimatic variables,

indices describing water flow and accumulation retention in

continental ecosystems may prove useful as vegetation largely

depends on soil moisture. Although several factors, such as

mineral and nitrogen content, climate, history or land

management, influence vegetation, hydromorphy is often cru-

cial (Pellissier et al., 2002; Keddy, 2010). However, this factor

has largely been omitted from the expanding field of habitat

modelling. We tested here the ability of the topographic

wetness index, common in hydrology and geography (Beven

& Kirkby, 1979; Chen & Yu, 2011; Ibrahim & Huggins, 2011)

to predict species occurrence of grassland birds in floodplains.
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Wetlands are among the most threatened habitats in the

world, and many species they host are declining (Brinson

& Malv�arez, 2002). By their effect on river flow regulation

(Acharya, 2000) and water quality improvement (Borges

et al., 2008), they provide highly valuable ecosystem services.

In addition, many regularly flooded areas have become local

hotspots of biodiversity that sustain floodplain specialists,

adapted to flood disturbance regimes (Gibbs, 2000), but also

species unable to cope with intensive agriculture practices and

urbanization and that find no suitable habitat elsewhere

(Godreau et al., 1999). Flood risk and water proximity reduce

the range of activities available to agriculture, and hay mead-

ows remain a viable economical alternative to intensive crops

in floodplains (Cook, 2010). However, as in other farmland

areas (Siriwardena et al., 1998), floodplain biodiversity is

threatened by river embanking, poplar cultivation, biological

invaders (Skorka et al., 2010) and the intensification of culti-

vation practices (Plantureux et al., 2005; Britschgi et al., 2006;

Broyer, 2009; Zahn et al., 2010). A novel threat comes from

climate change (IPCC, 2007). Prospective models based on

global and regional circulation models suggest that new

conditions may modify flood regimes (Arora & Boer, 1999;

Brinson & Malv�arez, 2002) and temperature increase is

expected to change plant phenology and the composition of

plant communities (Thuiller et al., 2005). Ultimately, novel

conditions may alter the dynamics of natural habitats and

allow practices less favourable to biodiversity.

In wetlands, flood regime is a major factor that structures

the distribution of species (Leyer, 2005). The modelling of a

flood in space and time, that is, its geographical extent and

duration, is a difficult issue because it requires fine environ-

mental data like main channel and aquifer flow models as

well as continuous transversal river profiles that are rarely

available and very resource-consuming if they have to be

acquired over large areas. Thus, it is essential to develop

proxies for flooding susceptibility and more generally water

accumulation capacity in any location of an area of interest.

Topographic wetness indices, hereafter referred as TWI, have

been developed with this aim (Beven & Kirkby, 1979). They

only require digital elevation models (DEM), which are

commonly available in many parts of the world. TWI has

been largely used to detect wetlands (Grabs et al., 2009;

Dosskey & Qiu, 2011) but have been almost entirely omitted

from ecological studies. To our knowledge, only two studies

have assessed these indices. The first work modelled the

distribution of an Alpine plant (Parolo et al., 2008). TWI

proved to be a poor predictor, but the species was not asso-

ciated with wetlands. The second study found correlations

between TWI and forest plant communities (Kopecky &

Cizkova, 2010). Thus, the informative value of TWI to

predict abundance, distribution or richness for animal and

plant species is still largely unknown. We believe there is a

need to assess its interest in ecological studies.

Several related indices have been developed over the years

from the initial index developed by Beven & Kirkby’s (1979)

with the objective of improving water flow modelling. We

used four versions of the TWI: the single direction algorithm

D8 (O’Callaghan & Mark 1984), the multiple flow algorithm

FD8 (Freeman, 1991; Quinn et al., 1991), the triangular

multiple flow algorithm MD∞ (Seibert & McGlynn, 2007) and

the SAGA (System for Automated Geoscientific Analyses)

wetness index SWI (B€ohner et al., 2006). The single direction

algorithm (D8) directs the flow from each grid cell to one of

the eight adjacent cells following the steepest downslope. The

multiple flow direction algorithm (FD8) allows a split of flow

according to the slope gradient of each eight directions corre-

sponding to the neighbouring cells. Triangular multiple flow

direction algorithm (MD∞) also allows flow splitting, but it

partitions each cell in triangular facets before flow computa-

tion. Lastly, SWI is an algorithm based on a multiple flow

direction method, weighing the catchment area value by a

function of the slope angle and the maximum values of neigh-

bouring pixels in the catchment area. This computation

smoothes the wetness index value in flat areas.

We investigated the effect of the four TWI indices on the

occurrence of four grassland bird species in a large flood-

plain. Birds are particularly sensitive to the structure of vege-

tation for reproduction (Cody, 1985; Orłowski, 2004). This

sensitivity associated with a high detectability makes them

informative indicators of habitat (Hvenegaard, 2010). In

addition, we assessed the effect of DEM spatial resolution on

model fits. There is a priori no reason to select one particular

spatial resolution, and the optimal spatial resolution, i.e. the

scale of importance for the organism, may not be the finest

(De Knegt et al., 2010). Thus, we calculated TWI indices at

two different resolutions, consistent with the typical home

range of a territorial passerine, to determine the most appro-

priate resolution for grassland birds.

METHODS

Study area and species sampling

The study area extends over the lower 200-km section of the

Loire river drainage in Western France (Fig. 1). Grassland is

the dominant habitat type encountered in the floodplain of

the Loire River and some of its main tributaries. Such an

ecological continuity is now unusual in Western Europe. It

provides an ideal set-up to investigate the factors affecting

the distribution of grassland species. The study focuses on

four passerines that dominate the small grassland bird

community in this area, namely the Whinchat Saxicola rube-

tra, the Yellow Wagtail Motacilla flava, the Corn Bunting

Emberiza calandra and the Reed Bunting Emberiza schoeni-

clus. All four species breed in grassland, but they are more

or less strictly associated with wetland (Bradbury & Bradter,

2004). The Whinchat breeds in grasslands and heathlands. It

is a typical species of wet hay meadows in many floodplain

areas (Yeatman-Berthelot & Jarry, 1994). The Reed Bunting

breeds in the same meadows but also depends on linear

structures like ditches, bushes and reed beds (Brickle &

Peach, 2004). The Yellow Wagtail largely exploits grassland
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but can breed in other habitats as shown by recent observa-

tions of breeding in crops (Kragten, 2011). The Corn Bun-

ting is typically an open habitat species that is less dependent

on hydromorphy (Mason & MacDonald, 2000).

We recorded the occurrence of each species in sixty-four

500-m-long transects distributed across the floodplains of the

study area. A positive relationship between the size of habitat

patch and presence or abundance is often observed in grass-

land birds (Helzer & Jelinski, 1999; Davis, 2004). To reduce

the potential bias caused by patch size, we placed transects

in large patches of hay meadow. We surveyed all sites in

May 2009 and May 2010. Sampling was carried out between

30 min and 5 h after sunrise in low wind conditions and no

precipitation. These conditions ensured optimal bird activity

regarding the time of the year and the period of the day. We

measured the distance of individuals to the transect using a

laser telemeter (Bushnell Elite rangefinder, Bushnell Corpora-

tion, Overland Park, KS, USA). All observations were made

within a 100-m radius around the transect. Given the relative

homogeneity of habitat structure, we assumed that the

detectability bias is constant across the study area. Thus,

transect counts provided standardized estimates of occur-

rences. A species was considered as present when it was

detected at least in one of the two sampling years.

Topographic wetness index layers

Topography remains the dominant factor that controls water

flow. TWI calculates the capacity of water accumulation of

each pixel in a watershed using a DEM (Beven & Kirkby,

1979). Indices other than the four selected evaluate water

accumulation, but they use different data types such as pluvi-

ometry or temperature (Grabs et al., 2009). Such variables are

not always available at the drainage scale and require an addi-

tional step of modelling. We thus discarded these methods

that may not be applicable to many users. In its original form,

the D8 algorithm, TWI is computed for each pixel using slope

and drainage area (Beven & Kirkby, 1979) as follows:

TWI = ln (AS/tan b) where AS is the drainage area (in m²)
and b is the local slope gradient (in%). The DEM is used to

calculate AS and b values. The three other methods are derived

from the D8 index. For all algorithms, pixels with higher TWI

values have higher capacity of water accumulation.

We calculated TWIs for the whole Loire catchment. We

computed eight versions of this layer combining the four

algorithms and two spatial resolutions with the aim of identi-

fying the best predictor (see example Fig. 1). All indices were

calculated using SAGA GIS (B€ohner et al., 2006) with

‘Terrain Analysis – Hydrology’ tools. Topographic layers were

computed using two DEM (BD Alti IGN©, Institut national
de l’information g�eographique et foresti�ere (IGN), Saint-

Mand�e, France) with 50 m and 250 m pixel size and 1-m alti-

tudinal resolution. To extract TWI values, we defined 250-m

buffers around each transect and computed the mean and

standard deviation of TWI for all pixels included in the buf-

fer. Computations were carried out for the eight combina-

tions of index and resolution. The 250-m resolution is more

congruent with the home range scale of a passerine bird than

the 50-m resolution. In contrast, the number of pixels used

to estimate TWI around the transect is larger with the 50-m

resolution and may yield more precise estimates.

Statistical analyses

We used logistic regression to test for the relationship

between TWI and species occurrence with different TWI

algorithms and resolutions. We used binomial generalized

linear models (GLMs) with logit-link. In order to take into

account the spatial autocorrelation between sampling units,

we used spatial eigenvector mapping (SEVM; Griffith, 2000;

Dormann et al., 2007; Corkeron et al., 2011). We selected

this method because we could not satisfactorily fit a theoreti-

cal variogram to our dataset, which may result from the

distribution of sampling units along a limited number of

preferential directions in the river catchment and the hetero-

geneous distribution of populations in three main zones of

the study area (Fig. 1). SEVM is more flexible as it does not

assume a specific spatial model.

Spatial eigenvectors were computed using Spatial Analysis

in Macroecology software (SAM 4.0) (Rangel et al., 2010) on

geographical distances. We used the broken-stick method to

select eigenvectors that describe most of the spatial autocor-

relation in a dataset (Jackson, 1993; Diniz-Filho et al., 1998;

Diniz-Filho & Bini, 2005). Three eigenvectors were selected

because their observed eigenvalues exceeded the eigenvalue

expected by the broken-stick distribution (Appendix S1 in

Figure 1 Map of the topographic

wetness index calculated using the FD8

(multiple flow direction) algorithm. The

inset shows the location of the study area

in Western Europe.
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Supporting Information). Selected eigenvectors were added

as covariables in models to control for spatial autocorrelation

(Diniz-Filho & Bini, 2005). We checked the absence of

spatial autocorrelation in model residuals using Moran’s I

test in the SAM software (Rangel et al., 2010) (Appendix

S2). GLMs were computed using R software (R Development

Core Team, 2011). Null models included the three eigenvec-

tors, that is, the spatial information about the distribution of

our sampling units. They were compared with full models

including eigenvectors and TWI using AICc (Akaike’s infor-

mation criterion corrected) and model weights (Burnham &

Anderson, 2010). We used the CAR package in R software to

assess multicollinearity. It was limited in all models, and

statistical inferences were valid, as variance inflation factors

were consistently less than 1.80 (Zuur et al., 2009). We anal-

ysed the occurrence of each individual species, and all four

passerines grouped together to assess whether TWI predicted

the presence of at least one grassland species. However, the

Whinchat was present along with at least one other species

in all but one transect. Thus, we also analysed occurrence of

the three remaining species (Yellow wagtail, Corn Bunting

and Reed Bunting) as a group.

RESULTS

The Whinchat was the most common species (occurrence

frequency 0.66, Fig. 2). The three other species were also

common, but occurrence frequencies were lower (Yellow

Wagtail 0.42, Corn Bunting 0.41, Reed Bunting 0.36). The

combined occurrence frequency of the four species (0.67)

was almost entirely accounted for by the Whinchat. The

combined occurrence of the three remaining species was

slightly lower (0.58).

The broken-stick method selected the first three eigenvec-

tors that were included in all null and full models. Our data

showed positive relationships between TWI and occurrence

(Table 1, Fig. 3). However, model fit depended on species

identity, algorithm and DEM spatial resolution. The effect of

TWI varied greatly between individual species (Table 1). In

the Whinchat, DAICc values were larger than 2 for all meth-

ods and resolutions except for the SWI algorithm with 50-m

DEM. We found a nearly identical result to the Whinchat

model for the 4-species occurrence, which is explained by the

high co-occurrence of the Whinchat with the other species.

We found DAICc < 2 for the Yellow Wagtail, the Corn Bun-

ting and the Reed Bunting when species were considered sep-

arately. However, when we combined the occurrences of the

three passerines, AICc values were lower in models with TWI

than in the null models for the 250-m resolution (Table 1).

All algorithms predicted grassland species occurrence.

However, SAGA Wetness Index (SWI) yielded the worst

model fits (Table 1). AICc values were systematically higher

for SWI than for the other algorithms regardless of DEM

resolution. For example, in Whinchat data, AICc values

ranged between 80.84 and 75.98 for SWI and between 73.92

and 70.03 for the three other algorithms. The three other

methods consistently yielded better fitting models, but we

cannot identify the best method because AICc values were

too close to each other.

Finally, model fits depended on DEM spatial resolution

(Table 1). For all algorithms, AICc values were systematically

lower with 250-m pixel size than for 50-m pixel. We found

DAICc > 2 between the two DEM resolutions in the Whin-

chat and the 3-species occurrences. For the latter response

variable, all 250-m DEM models were better than null model

(DAICc > 2), whereas none of 50-m DEM were. Thus, DEM

with coarser resolution always yielded the best fitting model.

DISCUSSION

We found a positive relationship between TWI and both the

Whinchat and the combined 3-species occurrence, which

means that areas with a high potential of water accumulation

have a high probability to host passerines. In our floodplain

study area, topographic wetness indices are thus informative

predictors of one grassland bird population. Obviously, TWI

alone could erroneously predict high probability of occur-

rence in patches unsuitable to a species or a guild. The

strength of the relationship is bound to depend on land use

and agricultural practices such as drainage, land conversion

to crop or poplar, grassland fertilization all of which reduce

habitat suitability to grassland species. Moreover, the predic-

tive value of TWI may depend on climatic conditions

although the way in which it is affected remains unclear. In

dry areas, the relationship between potential and observed

wetness may be weaker. Yet, water is always expected to

accumulate in low areas, and thus, water-demanding species

may only survive in zones with high TWI values. Neverthe-

less, provided suitable habitat patches are sampled, as in the

present study, TWI can be useful for predicting species

occurrence. This finding is interesting because hydromorphy

and water availability are environmental parameters that are

difficult to estimate or access especially over large areas. TWI

only requires DEM raster layers that are widely available at

different resolutions across the world. It is likely to prove

useful for a wide range of species, plants or animals, because

water is crucial for most organisms. Furthermore, TWI was
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Figure 2 Occurrence frequency of the four passerine species,

all species (4 species) and all species, but the Whinchat

(3 species) observed in 64 transects.
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developed as a general tool to describe spatial soil moisture

patterns in wetlands. Therefore, we believe TWI could find

greater applications in ecological studies as a hydrological

proxy. Its simple form and the availability of DEM data call

for an assessment of its usefulness, especially in the growing

research field of species distribution modelling.

Table 1 Corrected Akaike’s information criterion (AICc) and Akaike weight (w) values for logistic regressions between the occurrence

of either individual bird species or the 3-species combination (Yellow wagtail, Corn bunting and Reed bunting) and topographic

wetness indices including eigenvectors. We used four algorithms (D8, FD8, MD∞ and SAGA Wetness Index) and two resolutions

(250 m and 50 m pixel). AICc1 corresponds to the null model with spatial eigenvectors and AICc2 to the model with spatial

eigenvectors including topographic wetness index (TWI).

AICc1 AICc2 AAICc(1–2) w1 w2 AUC Coefficient � SE

Whinchat

250 m D8 81.83 70.03 11.80 0.00 1.00 0.82 1.78 � 0.56

FD8 81.83 71.84 9.99 0.01 0.99 0.81 1.76 � 0.57

MD∞ 81.83 70.26 11.57 0.00 1.00 0.82 1.86 � 0.59

SWI 81.83 75.98 5.85 0.05 0.95 0.79 1.59 � 0.69

50 m D8 81.83 72.56 9.27 0.01 0.99 0.81 1.76 � 0.59

FD8 81.83 73.92 7.91 0.02 0.98 0.80 1.95 � 0.69

MD∞ 81.83 72.75 9.08 0.01 0.99 0.81 1.78 � 0.60

SWI 81.83 80.84 0.99 0.38 0.62

Yellow wagtail

250 m D8 83.77 82.82 0.95 0.38 0.62

FD8 83.77 82.00 1.77 0.29 0.71

MD∞ 83.77 83.16 0.61 0.42 0.58

SWI 83.77 83.76 0.01 0.50 0.50

50 m D8 83.77 85.37 �1.60 0.69 0.31

FD8 83.77 85.73 �1.96 0.73 0.27

MD∞ 83.77 85.47 �1.70 0.70 0.30

SWI 83.77 85.63 �1.86 0.72 0.28

Corn bunting

250 m D8 86.37 85.92 0.45 0.44 0.56

FD8 86.37 84.91 1.46 0.33 0.67

MD∞ 86.37 85.52 0.85 0.40 0.60

SWI 86.37 86.62 �0.25 0.53 0.47

50 m D8 86.37 86.01 0.36 0.45 0.55

FD8 86.37 86.74 �0.37 0.55 0.45

MD∞ 86.37 86.07 0.30 0.46 0.54

SWI 86.37 87.87 �1.50 0.68 0.32

Reed bunting

250 m D8 71.38 72.50 �1.12 0.64 0.36

FD8 71.38 73.12 �1.74 0.71 0.29

MD∞ 71.38 73.01 �1.63 0.69 0.31

SWI 71.38 73.62 �2.24 0.75 0.25

50 m D8 71.38 73.35 �1.97 0.73 0.27

FD8 71.38 73.28 �1.90 0.72 0.28

MD∞ 71.38 73.31 �1.93 0.72 0.28

SWI 71.38 73.62 �2.25 0.75 0.25

Three species

250 m D8 85.25 77.56 7.69 0.02 0.98 0.80 1.44 � 0.52

FD8 85.25 75.49 9.76 0.01 0.99 0.81 1.75 � 0.58

MD∞ 85.25 77.92 7.33 0.03 0.97 0.79 1.48 � 0.54

SWI 85.25 80.63 4.62 0.09 0.91 0.79 1.46 � 0.69

50 m D8 85.25 83.82 1.43 0.33 0.67

FD8 85.25 84.89 0.36 0.46 0.54

MD∞ 85.25 83.95 1.30 0.34 0.66

SWI 85.25 84.76 0.49 0.44 0.56

Bold values are used to indicate DAICc larger than 2. w1 is the weight of the null model, and w2 the weight of the model including TWI. AUC

(Area Under the Curve) and coefficient and standard error are indicated for candidate models selected by AIC.
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Influence of algorithm, DEM resolution and species

Several factors affected the strength of the relationship between

TWI and species occurrence. Algorithm and DEM resolution

influenced the explanatory power of the predictor. The selec-

tion of the algorithm had the stronger influence on model fit.

According to our results, model fit was worse for SWI than it

was for the other three methods. SWI smoothes wetness index

values and thus homogenizes values between neighbouring

pixels as shown by the lower standard errors for this algorithm

(Appendix S4). Its use may not be recommended in flood-

plains with large flat areas. This index may perform better in

areas with larger altitudinal variations. The three other meth-

ods, D8, FD8 and MD∞ algorithms, are variants of the TWI

algorithm created by Beven & Kirkby (1979) and were devel-

oped to model water flow in a more realistic way than the

original index. They all yielded better fitting models than SWI,

but we could not identify the best method among them. It is

unlikely that their relative performance would change using

different statistical techniques. Therefore, they seemed equally

suitable to predict grassland bird distribution in our study

area. The importance of algorithm choice for TWI mapping

has been observed elsewhere (Kopecky & Cizkova, 2010).

Multiple flow algorithm performed best in this plant ecology

study. However, it did not stand out from the others in the

present work. Clearly, tests on more habitats and taxonomic

groups are required to determine whether any algorithm

would outperform the others in different conditions.

We also found a clear effect of DEM resolution. The lower

resolution (250-m pixel) provided the best model fit. Sørensen

& Seibert (2007) have already highlighted that a lower DEM

resolution might in some cases be more useful for landscape

analyses and modelling. Landscape is important for bird

habitat selection (Herkert, 1994; Naugle et al., 1999;

S€oderstr€om & P€art, 2002), which may account for the effect

of DEM resolution. Grassland birds tend to select large

continuous breeding patches and avoid fragmented land-

scapes. This process called area sensitivity has been observed

in breeding grassland birds (Helzer & Jelinski, 1999; Davis,

2004). In our study site, large continuous meadows are

located in the lowest areas of the floodplain, that is, have high

TWI values. High-resolution DEM (50-m pixel) may thus put

the emphasis on intrapatch variability rather than on land-

scape characteristics. Furthermore, the lower resolution may

better match the scale of the breeding home ranges, whereas

50-m resolution might more closely match the scale of the

territory. However, this explanation is difficult to evaluate as

we did not map territories here. Finally, the 50-m resolution

may be too fine relative to the altitudinal resolution (1 m). In

flat areas, identical DEM and TWI values can be observed for

several adjacent pixels (Appendix S5). In that case, increasing

the resolution may smoothen or equalize TWI values over the

area in the same way as SWI does. Thus, gain in spatial reso-

lution may only make sense if altitudinal resolution is gained

too. Unfortunately, no DEM with altitudinal resolution below

1 m is currently available at the scale of the study area.

Model fit was also influenced by the focal species too.

These results are consistent with the general knowledge on

species distribution modelling. The predictive ability of a

model is usually better for a specialist, whose niche compo-

nents can be more easily captured, than for a generalist or a

species whose niche varies in space (Franklin, 2010). The

Whinchat is a specialist of hay meadows. It only breeds in

extensively managed grassland in most parts of its range

(Broyer, 2009; Tome & Denac, 2012) and does not cope well

with changes in agricultural practices (Gr€uebler et al., 2008).

As expected, its occurrence was predicted by most models.

In contrast, the Yellow Wagtail can also breed in crops,

although less extensively than in grasslands (Kragten, 2011).

For this species, habitat selection was more variable and no

models predicted an effect of TWI on its occurrence. Similar

results were found for the Reed Bunting that breeds in

meadows but also commonly in other wetland habitat type

like ditches, ponds or streams (Brickle & Peach, 2004). The

Corn Bunting is not a wetland species per se but rather an

open habitat bird that favours large continuous patches

(Mason & MacDonald, 2000) and can breed in dry open

fields as well as in floodplains. However, the lack of clear

relationships between each of these three species and TWI

may stem from their lower occurrence that affected the

statistical power. This is suggested by the positive DAICc
observed with the 250-m spatial resolution DEM for the

Yellow wagtail and the Corn bunting. We also found an

effect of TWI on the combined dataset for the three species

occurrence (Yellow wagtail, Corn bunting and Reed bunting)

for all algorithms at the coarser resolution. Thus, TWI seems

able to capture the capacity of a floodplain area to host at

least some grassland bird populations and in this respect

may be useful for identifying the most favourable areas for

these species. The index performed well for the Whinchat

here, but it was more loosely related to the least specialized
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Figure 3 Probability of presence for the Whinchat and the 3

species (Yellow wagtail, Corn bunting and Reed bunting)

represented as a logistic function of topographic wetness index.

The topographic wetness index setting used here is D8 algorithm

and 250-m digital elevation models.
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species. Transects were placed on purpose in large grassland

patches to reduce the effect of area sensitivity on surveys.

Our sampling design is thus not random relative to distribu-

tion of TWI in the floodplain as we sampled the higher part

of the TWI range. This sampling strategy may actually

underestimate the effect of TWI on the occurrence of

grassland species. Adding covariables, like patch size or

vegetation structure, might thus improve TWI estimates

(Helzer & Jelinski, 1999; Davis, 2004).

According to our results, TWI proved to be a useful envi-

ronmental predictor for modelling the distribution of at least

one species. More generally, this study shows that it is poten-

tially a valuable predictor for other plant or animal wetland

species. However, several settings must be considered care-

fully. Algorithm choice is important because it affects model

fit. High-resolution DEMs may not be ideal for bird studies

as habitat selection maybe more landscape based than site

based in this group. Finally, specialization level of the focal

species also affects model prediction. More studies on other

habitats and taxonomic groups are required to fully assess

the usefulness of TWI in ecological studies, but present

results suggest that its interest may lie beyond the scope of

floodplain grassland birds.
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